Basic Power Electronics Components
SI Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Quantity symbol</th>
<th>Unit</th>
<th>Unit symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>Farad</td>
<td>F</td>
</tr>
<tr>
<td>Charge</td>
<td>Q</td>
<td>Coulomb</td>
<td>C</td>
</tr>
<tr>
<td>Current</td>
<td>I</td>
<td>Ampere</td>
<td>A</td>
</tr>
<tr>
<td>Electromotive force</td>
<td>E</td>
<td>Volt</td>
<td>V</td>
</tr>
<tr>
<td>Frequency</td>
<td>f</td>
<td>Hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>Inductance (self)</td>
<td>L</td>
<td>Henry</td>
<td>H</td>
</tr>
<tr>
<td>Period</td>
<td>T</td>
<td>Second</td>
<td>s</td>
</tr>
<tr>
<td>Potential difference</td>
<td>V</td>
<td>Volt</td>
<td>V</td>
</tr>
<tr>
<td>Power</td>
<td>P</td>
<td>Watt</td>
<td>W</td>
</tr>
<tr>
<td>Resistance</td>
<td>R</td>
<td>Ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>Temperature</td>
<td>T</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Time</td>
<td>t</td>
<td>Second</td>
<td>s</td>
</tr>
</tbody>
</table>
Common Prefixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Name</th>
<th>Meaning (multiply by)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>tera</td>
<td>10^{12}</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10^9</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10^6</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10^3</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>p</td>
<td>pico</td>
<td>10^{-12}</td>
</tr>
</tbody>
</table>
Resistors, Capacitors and Inductors

• **Resistors** provide resistance
 – they oppose the flow of electricity
 – measured in Ohms (Ω)

• **Capacitors** provide capacitance
 – they store energy in an electric field
 – measured in Farads (F)

• **Inductors** provide inductance
 – they store energy in a magnetic field
 – measured in Henry (H)
Circuit Symbols

- Wire (conductor)
- Junctions
- Wires crossing (no junction)

- Resistor
- Capacitor
- Inductor

- Variable resistor
- Switch
- Lamp
e.m.f. (e.g. battery)

\[V \]

ground (zero volts)

voltmeter

ammeter

voltage source
Diodes

It is represented by the following symbol, where the arrow indicates the direction of positive current flow.
P-N Junction

- $V_1 > V_2$, current
- $V_1 < V_2$, no current
Forward Bias and Reverse Bias

• Forward Bias: Connect positive of the Diode to positive of supply...negative of Diode to negative of supply

• Reverse Bias: Connect positive of the Diode to negative of supply...negative of diode to positive of supply.
I-V Characteristics of Practical Diode
- **Turn-on and breakdown voltages** for a silicon device

![Graphs](Image)

(a) A silicon diode

(b) Straight-line approximation to silicon diode characteristics
Shockley Equation

\[
i_D = I_s \left[\exp\left(\frac{v_D}{nV_T} \right) - 1 \right] \quad V_T = \frac{kT}{q}
\]

\[
V_T \approx 26 \text{ mV}
\]

I_s is the saturation current \(\sim 10^{-14}\)

V_d is the diode voltage

n – emission coefficient (varies from 1 - 2)

\(k = 1.38 \times 10^{-23} \text{ J/K}\) is Boltzmann’s constant

\(q = 1.60 \times 10^{-19} \text{ C}\) is the electrical charge of an electron.

At a temperature of 300 K, we have
Physical structures
• **Silicon diodes**
 – generally have a turn-on voltage of about 0.5 V
 – generally have a conduction voltage of about 0.7 V
 – have a breakdown voltage that depends on their construction
 • perhaps 75 V for a *small-signal diode*
 • perhaps 400 V for a *power device*
 – have a maximum current that depends on their construction
 • perhaps 100 mA for a *small-signal diode*
 • perhaps many amps for a *power device*
• **Schottky diodes**

 – formed by the junction between a layer of metal (e.g. aluminium) and a semiconductor

 – action relies only on majority charge carriers

 – much faster in operation than a *pn* junction diode

 – has a low forward voltage drop of about 0.25 V

 – used in the design of high-speed logic gates
Zener diodes

- A Zener diode is a pn silicon junction diode that is reverse biased and with the supply voltage sufficient to produce the ‘avalanche’ or ‘breakdown’ effect.
- A zener diode must be used in conjunction with a ‘current-limiting’ resistor to keep the current flow through the diode to a safe level.
- A zener diode is used to produce a stable voltage from a supply which is fluctuating.
Zener diodes

- uses the relatively constant reverse breakdown voltage to produce a voltage reference
- breakdown voltage is called the **Zener voltage**, V_Z
- output voltage of circuit shown is equal to V_Z despite variations in input voltage V
- a resistor is used to limit the current in the diode
A very common application of diodes is half-wave rectification, where either the positive or negative half of the input is blocked.
Complete Full-Wave Rectifier

(a)

(b)
• **Catch diode**
 – used when switching inductive loads
 – the large back e.m.f. can cause problems such as arcing in switches
 – **catch diodes** provide a low impedance path across the inductor to dissipate the stored energy
 – the applied voltage reverse-biases the diode which therefore has no effect
 – when the voltage is removed the back e.m.f. forward biases the diode which then conducts
Diode Ratings

- Peak inverse voltage (PIV)
- Maximum forward current (I_F)
- Maximum forward voltage drop (V_F)
- Reverse leakage current (I_R)
Diode handling and installation

Diodes are polarized and must be installed in with correct orientation.

Many diodes are modestly susceptible to ESD damage, so normal ESD precautions should be taken.

Mechanical stress due to lead bending should be minimized.
Thyristor

Symbol of Thyristor
Thyristors

- Most important type of power semiconductor device.
- Have the highest power handling capability. They have a rating of 5000V / 6000A with switching frequencies ranging from 1KHz to 20KHz.
• Is inherently a slow switching device compared to BJT or MOSFET.
• Used as a latching switch that can be turned on by the control terminal but cannot be turned off by the gate.
Structure

- Anode
- Gate
- Cathode

J1: p^+ \(10^{19}\) cm\(^{-3}\)
J2: n^- \(10^{13} - 5 \times 10^{14}\) cm\(^{-3}\)
J3: p^- \(10^{17}\) cm\(^{-3}\)

- Anode: 30-50 µm
- 50-1000 µm
- 30-100 µm
- 10 µm

n^+ \(10^{19}\) cm\(^{-3}\)
Device Operation

Simplified model of a thyristor
Effects of gate current

$V_1 > V_2 > V_3$

$I_G = 0$

$I_G3 > I_G2 > I_G1$

I_L, I_H, I_T
Anode current begins to decrease when the device is turned off. The time duration for this is denoted as t_q, which is also referred to as the device off time. The circuit off time, t_c, is the total time from the moment the device is turned off until the current completely recovers to zero.

The diagram illustrates the turn-off characteristics with the following stages:

1. **Commutation**: The current decreases due to the di/dt effect.
2. **Recovery**: The current recovers as the device transitions to its off state.
3. **Recombination**: The current eventually drops to zero, indicating complete turn-off.

The time intervals t_1, t_2, t_3, t_4, and t_5 represent the various stages of the turn-off process, with t_{rr} and t_{gr} indicating the recovery and recombination times, respectively.
Thyristor Conduction
Methods of Thyristor Turn-on

• Thermal Turn-on.
• High Voltage.
• Gate Current.
• dv/dt.
Thyristor Types

• Phase-control Thyristors (SCR’s).
• Fast-switching Thyristors (SCR’s).
• Gate-turn-off Thyristors (GTOs).
• Bidirectional triode Thyristors (TRIACs).
Phase Control Thyristor

- These are converter thyristors.
- The turn-off time t_q is in the order of 50 to 100μsec.
- Used for low switching frequency.
- Commutation is natural commutation
- On state voltage drop is 1.15V for a 600V device.
Fast Switching Thyristors

- Also called inverter thyristors.
- Used for high speed switching applications.
- Turn-off time t_q in the range of 5 to 50μsec.
- On-state voltage drop of typically 1.7V for 2200A, 1800V thyristor.
- High dv/dt and high di/dt rating.
Bidirectional Triode Thyristors (TRIAC)
Triac Characteristics

- Breakover voltages
 - $V_{B01, B01}$
 - $I_{g2} > I_{g21}$
Gate Turn-off Thyristors

- Turned on by applying positive gate signal.
- Turned off by applying negative gate signal.
- On state voltage is 3.4V for 550A, 1200V GTO.
- Controllable peak on-state current I_{TGQ} is the peak value of on-state current which can be turned-off by gate control.
Advantages over SCRs

• Elimination of commutating components.
• Reduction in acoustic & electromagnetic noise due to elimination of chokes.
• Faster turn-off, therefore can be used for higher switching frequencies.
• Improved efficiency of converters.
Advantages over BJTs

- Higher voltage blocking capabilities.
- High on-state gain.
- High ratio of peak surge current to average current.
- A pulsed gate signal of short duration only is required.
Disadvantages of GTOs

• On-state voltage drop is more.
• Due to multi cathode structure higher gate current is required.
• Gate drive circuit losses are more.
• Reverse blocking capability is less than its forward blocking capability.
Bipolar Transistor
'Conventional' view of the NPN Bipolar Transistor

\[I_C = \beta I_B \]

\[I_E = (\beta - 1) I_B \approx \beta I_B = I_C \]
(a) Base characteristics

\[v_{CE} > 1 \text{V} \]

(b) Collector characteristics

\[i_c \]

Current levels:
- 0.4 mA
- 0.3 mA
- 0.2 mA
- 0.1 mA
TRANSISTOR AS A SWITCH

Transistors may be used as switching elements to control DC power to a load.

The switched (controlled) current goes between emitter and collector, while the controlling current goes between emitter and base.

When a transistor has zero current through it, it is said to be in a state of *cutoff* (fully non conducting).

When a transistor has maximum current through it, it is said to be in a state of *saturation* (fully conducting).
TRANSISTOR AS A SWITCH
TRANSISTOR AS AN AMPLIFIER

A transistor can also amplify current. A low-level voltage (represented by the headphone output of the mp3 player), connected to the transistor's base through the volume control, will regulate the larger current powering the loudspeaker. But be careful--turn it up too high, and the transistor will be overloaded and may overheat.
TRANSISTOR AS AN AMPLIFIER
Field Effect Transistor (FET)
FET: N-Channel
FET: P-Channel
FET: As a switch
MOSFET

(a) n-Channel enhancement-type MOSFET
Semiconductor Cross-section of IGBT
IGBT

(b) Equivalent circuit

(c) Simplified circuit
Advantages of IGBT

- Combines the advantages of BJT & MOSFET
- High input impedance like MOSFET
- Voltage controlled device like MOSFET
- Simple gate drive, Lower switching loss
- Low on state conduction power loss like BJT
- Higher current capability & higher switching speed than a BJT. (Switching speed lower than MOSFET)
Applications of IGBT

• ac and dc motor controls.
• General purpose inverters.
• Uninterrupted Power Supply (UPS).
• Welding Equipments.
• Numerical control, Cutting tools.
• Robotics & Induction heating.
Example of Inverter Grade Thyristor Ratings

• V / I rating: 4500V / 3000A.
• Max. Frequency: 20KHz.
• Switching time: 20 to 100μsec.
• On state resistance: 0.5mΩ.
Example of Triac Ratings

- Used in heat / light control, ac motor control circuit
- V / I rating: 1200V / 300A.
- Max. Frequency: 400Hz.
- Switching time: 200 to 400μsec.
- On state resistance: 3.6mΩ.
Example of Power Transistor Ratings

• PT ratings go up to 1200V / 400A.
• PT normally operated as a switch in CE config.
• Max. Frequency: 400Hz.
• Switching time: 200 to 400μsec.
• On state resistance: 3.6mΩ.
Example of Power MOSFET Ratings

• Used in high speed power converters like inverters & choppers.
• Ratings up to 1000V / 100A.
• Example: MOSFET 800V / 7.5A rating.
• Max. Frequency: 100KHz.
• Switching time: 1.6μsec.
• On state resistance: 1.2mΩ.
Example of IGBT Ratings

• Used in high voltage / current & high frequency switching power applications (Inverters, SMPS).
• Example: IGBT 2500V / 2400A.
• Max. Frequency: 20KHz.
• Switching time: 5 to μsec.
• On state resistance: 2.3mΩ.
Designing – Heat Sinking
Power Semiconductor Devices, their Symbols & Characteristics

- **Diode**
 - Symbol: A to K
 - Current: I_D
 - Voltage: V_{AK}, V_{AK}
 - Characteristic: I_D vs V_{AK}

- **Thyristor**
 - Symbol: A to K
 - Current: I_A
 - Voltage: V_{AK}, V_{AK}
 - Characteristic: I_A vs V_{AK}, Gate triggered

- **SiTH**
 - Symbol: A to K
 - Current: I_A
 - Voltage: V_{AK}, V_{AK}
 - Characteristic: I_A vs V_{AK}

- **GTO**
 - Symbol: A to K
 - Current: I_A
 - Voltage: V_{AK}, V_{AK}
 - Characteristic: I_A vs V_{AK}, Gate triggered

- **MCT**
 - Symbol: A to K
 - Current: I_A
 - Voltage: V_{AK}, V_{AK}
 - Characteristic: I_A vs V_{AK}
DEVICE SYMBOLS & CHARACTERISTICS

LASCR

NPN BJT

IGBT

Gate triggered

V_{AK}

I_A I_{Bn} $I_{Bn} > I_{B1}$

V_{CE}

I_{B1}

V_{GSn} $V_{GSn} > V_{GS1}$

V_{T}

V_{CE}
N-Channel MOSFET

SIT

I_D

V_GS0
V_GS1 > V_GSn
V_GSn
V_GS1 = 0 V
V_GSn
V_DS
V_DS
Power Switches: Power Ratings

- **Thyristor**
 - 1GW
 - 10MW
 - 1MW
 - 100kW
 - 10kW
 - 1kW
 - 100W

- **GTO**
 - 10MW
 - 1MW
 - 100kW
 - 10kW
 - 1kW
 - 100W

- **IGBT**
 - 10MW
 - 1MW
 - 100kW
 - 10kW
 - 1kW
 - 100W

- **MOSFET**
 - 10MW
 - 1MW
 - 100kW
 - 10kW
 - 1kW
 - 100W
<table>
<thead>
<tr>
<th></th>
<th>Thy</th>
<th>BJT</th>
<th>FET</th>
<th>GTO</th>
<th>IGBT</th>
<th>IGCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>Early 60s</td>
<td>Late 70s</td>
<td>Early 80s</td>
<td>Mid 80s</td>
<td>Late 80s</td>
<td>Mid 90’s</td>
</tr>
<tr>
<td>Voltage ratings</td>
<td>5kV</td>
<td>1kV</td>
<td>500V</td>
<td>5kV</td>
<td>3.3kV</td>
<td>6.5kV</td>
</tr>
<tr>
<td>Current ratings</td>
<td>4kA</td>
<td>400A</td>
<td>200A</td>
<td>5kA</td>
<td>1.2kA</td>
<td>4kA</td>
</tr>
<tr>
<td>Switch Freq.</td>
<td>na</td>
<td>5kHz</td>
<td>1MHz</td>
<td>2kHz</td>
<td>100kHz</td>
<td>1kHz</td>
</tr>
<tr>
<td>On-state Voltage</td>
<td>2V</td>
<td>1-2V</td>
<td>I* Rds (on)</td>
<td>2-3V</td>
<td>2-3V</td>
<td>3V</td>
</tr>
<tr>
<td>Drive Circuit</td>
<td>Simple</td>
<td>Difficult</td>
<td>Very simple</td>
<td>Very difficult</td>
<td>Very simple</td>
<td>Simple</td>
</tr>
<tr>
<td>Comm-ents</td>
<td>Cannot turn off using gate signals</td>
<td>Phasing out in new product</td>
<td>Good performance in high freq.</td>
<td>King in very high power</td>
<td>Best overall performance.</td>
<td>Replacing GTO</td>
</tr>
</tbody>
</table>